СЫРОЕДЕНИЕ

Объявление

Xinki

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » СЫРОЕДЕНИЕ » Cыроедение Палеолита/СЫРОМЯСОЕДЕНИЕ » Список опасных веществ в приготовленных продуктах


Список опасных веществ в приготовленных продуктах

Сообщений 1 страница 10 из 10

1

Химические вещества переводить не стал т.к. не умею и интересующимся будет проще найти эти вещества в источниках исследований. (национальной медицинской библиотеке по адресу:
http://www.ncbi.nlm.nih.gov/)

Короче говоря:

Из-за тепла, с приготовлением пищи образуются новые вещества.
Большинство из этих новых веществ образуются из реакции белков с углеводами.
Некоторые из этих веществ вызывают рак или болезни мозга, ухудшают функции медиаторов и метаболизма.

Медиаторы они же нейротрансмиттеры участвуют в передаче нервных импульсов с нервного окончания на рабочий орган и с одной нервной клетки на другую. В центральной нервной системе роль медиаторов осуществляют ацетилхолин, норадреналин, дофамин, серотонин, гамма-аминомасляная и глутаминовая кислоты и глицин.

Для того чтобы стареть не болея, нужно потреблять мало приготовленную пищу. (белковую еду, в частности). Ешьте больше фруктов и свежей сырой животной пищи (например, сашими или свежий сырой яичный желток, кстати требующих часового отдыха для переваривания). Комбинирование этих продуктов включает все необходимые питательные вещества.

Детально:

Химический эксперимент

Приготовление пищи напоминает химический эксперимент с образованием новых веществ. Множество из этих образовавшихся веществ гетероциклические амины (HCA).
Многие из этих HCA прямо или косвенно вызывают физическое привыкание. (1)
HCA образуется под воздействием тепла из-за химической реакции белков и углеводов и / или креатина (в красном мясе) или нитратов (в растениях).

Несколько примеров:

триптофан + form- / acet-aldehyde = 1-methyl-1,2,3,4-tetrahydro-beta-carboline (про-мутаген) (2)
триптофан + гликолевый альдегид = 1-hydroxymethyl-tetrahydro-beta-carboline (3)
серотонин + формальдегид = 6-hydroxy-tetrahydro-beta-carboline (5)
серотонин + ацельдегид = 6-hydroxy-1-methyl-tetrahydro-beta-carboline (6)
тирамина + нитрит = 3-diazotyramine(4-(2-aminoethyl))-6-diazo-2,4-cyclohexadienone (канцероген) (7)
соль + нитрит + белок / sugar = 2-chloro-4-methylthiobutanoate (мутаген) (8)
глутамат + сахар = 2-amino-6-methyldipyrido-(1,2-a:3',2'-d)imidazole (канцероген) (9)
глутамат + сахар = 2-aminodipyrido-(1,2-a:3',2'-d)imidazole (канцероген) (9)

канцероген от слова cancer(рак) - вещество вызывающее рак.

Когда альдегиды вступают в реакцию с циклическими аминокислотами или аминами (например, триптофан, триптамин, серотонин, фенилаланин, тирозин, допамин, тирамин, анилин), образуются в основном бета-карболины и изохинолины. Когда креатинин (из мяса) вступает в реакцию, образуются в основном imidazoquinolines и imidaziquinoxalines. (10)
(Глутамат и триптофан - аминокислоты, тирамин и серотонин - амины, альдегиды - сахара)

В Каких продуктах?

В любой приготовленной нагревом еде образуются HCA.
Почти все приготовленные продукты содержат:

9H-pyrido(3,4-b)indole = бета-карболин = триптофан / триптамин + альдегиды (11)
1-methyl-9H-pyrido(3,4-b)indole = 1-метил-бета-карболин = триптофан / триптамин + альдегиды (11)
Эти вещества влияют на бензодиазепиновые рецепторы в головном мозге, и косвенно захватывают другие нейротрансмиттеры. (12)
Если эти вещества в дальнейшем реагируют на амины, типа анилина, то они даже становятся мутагенными (23).
Количество HCA зависит от того, сколько белка содержит пища и от того, как сильно пищу нагревают. (14)

Обратите внимание, что очень часто в исследованиях вредности мяса не пишут что за мясо было использовано и как оно было приготовлено.
Большинство сравнений диет проведённых в Штатах сравнивало вегетарианскую диету с стандартной диетой американца. Я думаю из-за этого множество лживой веганской писанины вылилось на мясо. В упрощённом варианте стандартная американская диета это гамбургер и кола, обратите внимание на телосложение стандартного американца. Я не видел мяса внутри гамбургера, между булок была котлета, листья салата, соус...(био???, ГМО???, HCA???) Психом быть выгодно, можно не работать, а деньги заработать стоя у макдональдса с плакатами, ведь на какие-то деньги они снимают офисы. Возможно макдональдс приплачивает веганам чтобы люди думали что едят мясо, это хорошая живая агрессивная реклама макдональдса, разве там продаётся мясо?, зайдите в макдональдс и попросите у продавца мяса :-)))) Попытка приучить людей к полуфабрикатам путем подмены понятий(фаст фуд и мясо) чтобы человек поедал больше фабричного нежели натурального т.к. в результате с него можно выкачать больше денег или чем сложнее производство тем больше налогов, лекарств и не так долго надо платить пенсию. Фаст фуд - быстрая еда, в смысле приготовления или поедания? Ни в каком смысле, кусок мяса съедается с примерно такой же скоростью и готовится от 0 до 3-х минут. Нормальное мясо жуется ни чуть не тяжелее котлеты, оно вкуснее, полуфабрикатная котлета - результат приспособленности и рекламы к некачественному непрожевываемому мясу.
Не смог проследить другой связи между конкретно макдональдсом и вегетарианством, учитывая РЕАЛЬНО отсутствующую прямую связь макдональдса и мяса. Веганы со своими плакатами стоят достаточно далеко от места РЕАЛЬНОГО "преступления"(убийства животных) против которого они РЕАЛЬНО протестуют т.е. не около бойни животных, и на их агитационных картинках часто изображен РЕАЛЬНО гамбургер, а не мясо.
Это примерная схема финансирования безумия оборачивающаяся распространением лживой информации о мясе.

Потому что красное мясо содержит большое количество белка и креатинина, приготовленное красное мясо содержит много HCA, особенно когда на гриле (15).
Кроме того, подготовленное красное мясо, а также подготовленная рыба, соя и птица содержат много HCA. (16) Усилители вкуса и бульон содержат белок-концентраты и поэтому тоже содержат много HCA. (11)
Также приготовленные продукты содержащие меньше белка содержат HCA, например приготовленное зерно (17) и растения (18), и даже пиво, соевый соус и консервированный апельсиновый сок. (19)

Например:

Мясо содержит много креатина (20)

2-amino-1-methyl-6-(4-hydroxyfenyl)-imidazo-(4,5-b)pyridine (мутаген) = креатин + тирозин + глюкоза (21)

Соя содержит глобулины

2-amino-9H-pyrido(2,3-b)indole (мутаген) (22) = соя-глобулины + сахар (23)
2-amino-3-methyl-9H-pyrido(2,3-b)indole (мутаген) (24) = соя-глобулины + сахар (23)

В приготовленной рыбе (25);

3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole (мутаген) (26) = триптофан + ацетальдегида (27)
3-amino-1-methyl-5H-pyrido(4,3-b)indole (мутаген) (26) = триптофан + ацетальдегид (28)

Овощи содержат нитрит

N-нитрозо-соединения (раковые) = амины + нитриты + сахар

конкретный пример N-нитрозо-соединения;

4-(2-aminoethyl)-6-diazo-2,4-cyclohexadienone (раковые) = тирамин + нитрит + сахар (7)

Капуста содержит тиоцианаты;

tetrahydro-beta-carboline-производные = изотиоцианат + тирамин / серотонин и т.д. (токсично) (29)

Не HCA;

Растения также содержат флавоноиды

флавоноиды + нагрев = мутагенные гликозиды (30)

Апельсиновый сок содержит много свободных аминокислот, которые легко комбинировать с альдегидами в гетероциклическими аминами, во время производства и хранения.

Чего ожидать от HCA?

1: действуют как медиаторы (нейротрансмиттеры)

Некоторые HCA, такие как бета-карболины, могут непосредственно влиять на нейротрансмиттер-рецепторы, такие как бензодиазепиновые рецепторы. Просто потому, что организм также вырабатывает бета-карболины выступающие в качестве медиаторов. HCA также может занять рецепторы других нейротрансмиттеров, таких как серотонин и допамин рецепторы. Особенно, когда они состоят из тех же аминов.

Некоторые примеры;

3-methoxycarbonyl-beta-carboline действует через различные рецепторы (31) и увеличивает обмен дофамина, подобно физическому стрессу. (32) Это увеличивает "иррациональное" агрессивное поведение (33), и уменьшает социальное взаимодействие (34).

3-ethoxycarbonyl-beta-carboline, это снотворное и анестетик (35), препятствует исследовательскому поведению (36) и социальное взаимодействию. (37) У доминирующих типов усиливает агрессивное поведение, но тормозит сексуальный аппетит. (38) Это повышает адреналин (39) и уровень кортизола, уровень артериального давления и частоту сердечных сокращений (40), а также увеличивает секрецию и распад дофамина (41), подобно физическому стрессу.

3-Hydroxymethyl-beta-carboline, хотя и снотворное (42), это негативно влияет на сон (43).

3-N-methylcarboxamide-beta-carboline повышает безрассудность (44) и агрессивность поведения (45), и тормозит сексуальный аппетит. (46) Как правило, тормозит (47), но локально стимулирует выделение норадреналина. (48) Это увеличивает глутамат (49), ACTH и вещество P-секреции (50), повышает кровяное давление (51) и несмотря на анестезирующий эффект (52), вызывает физический стресс. (53).

3-Methylcarbonyl-6,7-dimethoxy-4-ethyl-beta-carboline блокирует GABA-рецепторы (54), увеличивает GABA и уровень глицина, уменьшает уровень глутамата и аспартата (55), увеличивает выработку кортикостерона, адреналина и норадреналина (56), уменьшается выработка серотонина (57) и увеличивается активность норадреналин-рецептора. (58) Это увеличивает эффект кокаина (59), вызывает беспокойство (60) и подавляет активность иммунной системы. (61)

3-Ethylcarbonyl-6-benzyloxy-4-methoxymethyl-beta-carboline действует седативно (62), вызывает амнезию (63), и блокирует взаимодействие бета-эстрадиола-LH (lutinizing гормона) . (64)
3-Ethylcarbonyl-5-benzyloxy-4-methoxymethyl-beta-carboline сильно стимулирует аппетит. (65)
3-Ethylcarbonyl-5-isopropyl-4-methyl-beta-carboline причина беспокойства (66) и бессонницы (67), и уменьшения социального взаимодействия. (68)
Кроме того, "нормальные" бета-карболины, в приготовленной пище также содержат тетрагидро-бета-карболины. (69)
Tetrahydro-beta-carboline стимулирует влечение к алкоголю (70), увеличивает частоту сердечных сокращений и артериального давления (71), и, как и 5-methoxy-tetrahydro-beta-carboline и 5-hydroxy-tetrahydro-beta-carboline увеличивает уровень пролактина и влияет на рецепторы серотонина. (72)
6-methoxy-tetrahydro-beta-carboline увеличивает выработку норадреналина и ACTH, и уменьшает выработку серотонина и гормона роста. (73)
2-Fenylpyrazolo(4,3-c)quinoline-3(5H)-one действует седативно (74), увеличивает уровень кортикостерона (75) и уменьшает специфичные бензодиазепиновые рецепторы в мозге. (76)

2: вызывает рак

Часть образовавшихся веществ мутагены и вызывают рак и повреждения специфичных ячеек-ДНК.
Повреждения ДНК линейно возрастает с приемом HCA. (77)
Степень канцерогенности HCA отчасти зависит от того, сколько HCA содержит азота. (78)

Соль, белок и нитрит (из растений) может сделать доступным азот для реакции на HCA.
И нитрозированные HCA еще более канцерогенные. (79)

Некоторые из наиболее распространённых мутагенных HCA в приготовленных продуктах:

pyridoindole (амино-гамма-карболин) (80)
2-amino-9H-pyrido(2,3-b)indole (амино-альфа-карболин) (81)
2-amino-3-methyl-9H-pyrido(2,3-b) (82)
3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole (83)
3-amino-1-methyl-5H-pyrido(4,3-b)indole (84)
1-methyl-3-carbonyl-1,2,3,4-tetrahydro-beta-carboline (85)
4-aminobiphenyl (86)
4,4'-methylenedianiline (87)
3,2'-dimethyl-4-aminobiphenyl (88)
1,2-dimethylhydrazine (89)
phenyl-hydroxylamine (90)
O-acetyl-N-(5-phenyl-2-pyridyl)-hydroxylamine (91)
2-amino-3-methylimidazo(4,5-f)quinoline (92)
2-amino-3-methylimidazo(4,5-f)quinoxaline (93)
2-amino-3,4-dimethylimidazo(4,5-f)quinoline (94)
2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline (95)
2-amino-3,4,8-trimethylimidazo(4,5-b)pyridine (96)
2-amino-3,4,8-trimethylimidazo(4,5-f)quinoxaline (97)
2-amino-3,7,8-trimethylimidazo(4,5-f)-quinoxaline (98)
2-amino-n,n,n-trimethylimidazo-pyridine (99)
2-amino-n,n-dimethylimidazopyridine (100)
2-amino-4-hydroxymethyl-3,8-dimethylimidazo-(4,5-g)-quinoxaline (101)
2-amino-1,7,9-trimethylimidazo-(4,5-g)-quinoxaline (101)
2-amino-1-methyl-6-phenylimidazo-(4,5-b)-pyridine (102)

3 : являются причиной болезни мозга

Некоторые HCA непосредственно токсичны для мозга как и обычные хинолины которые проникают в мозг через транспортную систему допамина. (103)

Другие общие HCA (как пиридины (104) и бета-карболины (105)) становятся токсичными для мозга только после того как они были частично разложены различными ферментами в организме (106).

В оригинале, эти ферменты нужны для защиты мозга от токсичных веществ, но часть HCA превращается в более токсичные вещества. (107) Очевидно, природа не рассчитывала на "странный" HCA из приготовленной пищи.

Пиридины могут занимать только дофамин-рецепторы (108), и, следовательно, являются токсичными только для этих рецепторов. Частично разложенные пиридины более токсичны, чем оригиналы (109), но оригиналы уменьшают дофамин (110), норадреналин (111) и в основном уровень серотонина  (112).

Разрушение рецепторов в головном мозге причина таких заболеваний мозга, как болезнь Альцгеймера, Паркинсона и шизофрения.

Несколько токсичных HCA для мозга:

3-N-butylcarbonyl-beta-carboline (113)
3-N-methylcarboxamide-beta-carboline (113)
2-methyl-1,2,3,4-tetrahydro-beta-carboline (114)
2-methyl-1,2,3,4-tetrahydro-isoquinoline (114)
quinolinate (115)
quisqualinate (116)
tetrahydroisoquinoline (117)
1-benzyl-tetrahydro-isoquinoline (117)
N-methyl-(R)-salsolinol (118)
N-methyl-6-methoxy-1,2,3,4-tetrahydro-isoquinoline (119)
6-methoxy-1,2,3,4-tetrahydro-isoquinoline (119)
2,4,5-trihydroxyphenylalanine (120)
6-hydroxy-dopamine (121)
N-methyl-4-fenyl-1,2,3,6-tetrahydropyridine (122)
1-methyl-4-fenyl-1,2,3,6-tetrahydropyridine (123)
1-methyl-4-fenyl-1,2,5,6-tetrahydropyridine (124)
4-fenyl-1,2,3,6-tetrahydropyridine (125)
4-fenylpyridine (125)
3-acetylpyridine (126)
1-methyl-4-phenyl-1,4-dihydropyridine (127)
1-methyl-4-cyclohexic-1,2,3,6-tetrahydropyridine (128)
1-methyl-4-(2'-methylfenyl)-1,2,3,6--tetrahydropyridine (129)
1-methyl-4-(2'-ethylfenyl)-1,2,3,6-tetrahydropyridine (130)
1-methyl-4-(3'-methoxyfenyl)-1,2,3,6-tetrahydropyridine (131)
1-methyl-4-(methylpyrrol-2-yl)-1,2,3,6-tetrahydropyridine (132)

Хотя токсичные пиридины и создают окислительные радикалы (133) и снижают уровень антиоксидантов  (134), прием антиоксидантов не может предотвратить повреждение мозга от токсичных пиридинов. (135)

Пищевые добавки

Приготовление пищи, в первую очередь, для того чтобы сделать съедобным несъедобное.
Добавки в первую очередь для обмана вкуса, продления хранения пищи, и для того чтобы вы больше съедали.

Например, усилители вкуса являются в основном концентрированным белком, наполненным множеством вызывающих физическое привыкание бета-карболинов, которые заставляют вас съедать больше. Глутамат, популярный в китайской кухне, косвенно влияет же бензодиазепин рецепторы.

Что же делать?

Ешьте меньше полуфабрикатов, особенно белковых полуфабрикатов.
Ешьте как можно больше фруктов и свежую сырую животную пищу (например, сашими и др. "пищу для мозга").

Источники можно найти в национальной медицинской библиотеке по адресу:
http://www.ncbi.nlm.nih.gov/

(1) Loscher, W. et al, Withdrawal precipation by benzodiazepine receptor antagonists in dogs chronically treated with diazepam or the novel anxiolytic and anticonvulsant beta-carboline abecarnil. Naunyn Schmiedebergs Arch. Pharmacol. 1992 / 345 (4) / 452-460. , De Boer, S.F. et al, Common mechanisms underlying the proconflict effects of corticotropin, a benzodiazepine inverse agonist and electric foot shock. J. Pharmacol. Exp. Ther. 1992 / 262 (1) / 335-342. , Little, H.J. et al, The benzodiazepines : anxiolytic and withdrawal effects. Neuropeptides 1991 / 19 / suppl. 11-14. , Eisenberg, R.M. et al, Effects of beta-carboline-ethyl ester on plasma corticosterone -- a parallel with antagonist-precipated diazepam withdrawal. Life Sci. 1989 / 44 (20) / 1457-1466. , Maiewski, S.F. et al, Evidence that a benzodiazepine receptor mechanism regulates the secretion of pituitary beta-endorphin in rats. Endocrinology 1985 / 117 (2) / 474-480.
(2) (no author listed) Tetrahydro-beta-carbolines in foodstuffs, urine, and milk : physiological implications. Nutr. Rev. 1991 / 49 (12) / 367-368.
(3) Papavergou, E. et al, Tetrahydro-beta-carboline-carboxylic acids in smoked foods. Food Addit. Contam. 1992 / 9 (1) / 83-95.
(5) Rommelspacher, H. et al, Is there a correlation between the concentration of beta-carbolines and their pharmacolodynamic effects ? Prog. Clin. Biol. Res. 1982 / 90 / 41-55.
(6) Airaksinen, M.M. et al, Affinity of beta-carboline on rat brain benzodiazepine and opiate binding sites. Med. Biol. 1980 / 58 (6) / 341-344.
(7) Wakabayashi, K. et al, Recently identified nitrite-reactive compounds in food : occurence and biological properties of the nitrosated products. IARC Sci. Publ. 1987 / 84 / 287-291.
(8) Jolivette, L.J. et al, Thietanium ion formation from the food mutagen 2-chloro-4-(methylthio)butanoic acid. Chem. Res. Toxicol. 1998 / 11 (7) / 794-799.
(9) Sugimura, T. et al, Carcinogenic, Mutagenic, and Comutagenic Aromatic Amines in Human Foods. Natl. Cancer Inst. Monogr. 1981 / 58 / 27-33.
(10) Overvik, E. et al, Influence of creatine, amino acids and water on the formation of the mutagenic heterocyclic amines found in cooked meat. Carcinogenesis 1989 / 10 (12) / 1293-1301. , Yoshida, D. et al, Formation of mutagens by heating foods and model systems. Environ. Health. Perspect. 1986 / 67 / 55-58.
(11) Solyakov, A. et al, Heterocyclic amines in process flavours, process flavour ingredients, bouillon concentrates and a pan residue. Food Chem. Toxicol. 1999 / 37 (1) / 1-11. , Skog, K. et al, Analysis of nonpolar heterocyclic amines in cooked foods and meat extracts using gas chromatography-mass spectometry. J. Chromatogr. A. 1998 / 803 (1-2) / 227-233. , Stavric, B. et al, Mutagenic heterocyclic aromatic amines (HAA's) in 'processed food flavour' samples. Food Chem. Toxicol. 1997 / 35 (2) / 185-197. , Wakabayashi, K. et al, Human exposure to mutagenic / carcinogenic heterocyclic amines and comutagenic beta-carbolines. Mutat. Res. 1997 / 376 (1-2) / 253-259. , Galceran, M.T. et al, Determination of heterocyclic amines by pneumatically assisted electrospray liquid chromatography-mass spectometry. J. Chromatogr. A. 1996 / 730 (1-2) / 185-194. , Gross, G.A. et al, Heterocyclic aromatic amine formation in grilled bacon, beef and fish and in grilled scrapings. Carcinogenesis 1993 / 14 (11) / 2313-2318. , Sugimura, T. et al, Mutagenic factors in cooked foods. Crit. Rev. Toxicol. 1979 / 6 (3) / 189-209.
(12) Rommelspacher, H. et al, beta-Carbolines and tetrahydroisoquinolines : detection and function in mammals. Planta. Med. 1991 / 57 (7) / 585-592. , Pawlik, M. et al, Quantitative autoradiograph of (3H)norharman ((3H)beta-carboline) binding sites in the rat brain. J. Chem. Neuroanal. 1990 / 3 (1) / 19-24. , Rommelspacher, H. et al, Harman induces preference for ethanol in rats : is the effect specific for ethanol ? Parhmacol. Biochem. Behav. 1987 / 26 (4) / 749-755. , Rommelspacher, H. et al, Benzodiazepine antagonism by harmane and other beta-carbolines in vitro and in vivo. Eur. J. Pharmacol. 1981 / 70 (3) / 409-416.
(13) Totsuka, Y. et al, Structural determination of a mutagenic aminophenylnorharman produced by the co-mutagen norharman with aniline. Carcinogenesis 1998 / 19 (11) / 1995-2000. , Skog, K. et al, Analysis of nonpolar heterocyclic amines in cooked foods and meat extracts using gas chromatography-mass spectometry. J. Chromatogr. A. 1998 / 803 (1-2) / 227-233.
(14) Vikse, R. et al, Heterocyclic amines in cooked meat. (in Norwegian) Tidsskr. Nor. Laegeforen. 1999 / 119 (1) / 45-49. , Sinha, R. et al, Heterocyclic amine content of pork products cooked by different methods and to varying degrees of doneness. Food Chem. Toxicol. 1998 / 36 (4) / 289-297. , Byrne ,C. et al, Predictors of heterocyclic amines intake in three prospective cohorts. Cancer Epidemiol. Biomarkers 1998 / 7 (6) / 523-529. , Kaplan, S. et al, Nutritional factors in the etiology of brain tumors : potential role of nitrosamines, fat, and cholesterol. Am. J. Epidemiol. 1997 / 146 (10) / 832-841. , Ward, M.H. et al, Risk of adenocarcinoma of the stomach and esophagus with meat cooking method and doneness preference. Int. J. Cancer 1997 / 71 (1) / 14-19. , La Vecchia, C. et al, Selected micronutrient intake and the risk of gastric cancer. Cancer Epidemiol. Biomarkers Prev. 1994 / 3 (5) / 393-398. , Buiatti, E. et al, A case-control study of gastric cancer and diet in Italy : II. Association with nutrients. Int. J. Cancer 1990 / 45 (5) / 896-901. , Proliac, A. et al, Isolation and identification of two beta-carbolins in roasted chicory root. Helv. Chim. Acta 1976 / 59 (7) / 2503-2507. (in french)
(15) Salmon, C.P. et al, Effects of marinating on heterocyclic amine carcinogen formation in grilled chicken. Food Chem. Toxicol. 1997 / 35 (5) / 433-441. , Shibata, A. et al, Dietary beta-carotene, sigarette smoking and lung cancer in men. Cancer Causes Control 1992 / 3 (3) / 207-214.
(16) Chiu, C.P. et al, Formation of heterocyclic amines in cooked chicken legs. J. Food Prot. 1998 / 61 (6) / 712-719. , Byrne, C. et al, Predictors of dietary heterocyclic amine intake in three prospective cohorts. Cancer Epidemiol. Biomarkers Prev. 1998 / 7 (6) / 523-529. , Wakabayashi, K. et al, Human exposure to mutagenic / carcinogenic heterocyclic amines and co-mutagenic beta-carbolines. Mutat. Res. 1997 / 376 (1-2) / 253-259. , Salmon, C.P. et al, Effects of marinating on heterocyclic amine carcinogen formation in grilled chicken. Food Chem Toxicol. 1997 / 35 (5) / 433-441. , Skog, K. et al, Polar and non-polar heterocyclic amines in cooked fish and meat products and their corresponding pan residues. Food Chem. Toxicol. 1997 / 35 (6) / 555-565. , Pfau, W. et al, Characterization of the major DNA adduct formed by the food mutagen 2-amino-3-methyl-9H-pyrido(2,3-b)indole (MeAalphaC) in primary rat hepatocytes. Carcinogenesis 1996 / 17 (12) / 2727-2732. , Thiebaud, H.P. et al, Airborne mutagens produced by frying beef, pork and soy-based food. Food and Chemical Toxicology 1995 / 10 / 821-828. , Ohgaki, H. et al, Carcinogenicity in mice of mutagenic compounds from glutamic acid and soybean globulin pyrolysates. Carcinogenesis. 1984 / 5 (6) / 815-819. , Tomita, I. et al, Mutagenicity of various Japanese foodstuffs treated with nitrite. II. Directly acting mutagens produced from N-containing compounds in foodstuffs. IARC Sci. Publ. 1984 / 57 / 33-41.
(17) Knize, M.G. et al, Characterization of mutagenic activity in cooked-grain-food products. Food Chem. Toxicol. 1994 / 32 (1) / 15-21.
(18) Ozawa, Y. et al, Occurence of stereoisomers of 1-(2'-pyrrolidinethione-3'-yl)-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid in fermented radish roots and their different mutagenic properties. Biosci. Biotechnol. Biochem. 1999 / 63 (1) / 216-219. , Sen, N.P. et al, Analytical methods for the determination and mass spectometric confirmation of 1-methyl-2-nitroso-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid and 2-nitroso-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid in foods. Food. Addit. Contam. 1991 / 8 (3) / 275-289. , Sugimura, T. et al, Mutagenic factors in cooked foods. Crit. Rev. Toxicol. 1979 / 6 (3) / 189-209.
(19) Herraiz, T. et al, Presence of tetrahydro-beta-carboline-3-carboxylic acids in foods by gas chromatography-mass spectometry as their N-methoxycarbonylmethyl ester derivates. J. Chromatogr. A. 1997 / 765 (2) / 265-277.
(20) Skog, K.I. et al, Carcinogenic heterocyclic amines in model systems and cooked foods : a revieuw on formation, occurence and intake. Food Chem. Toxicol. 1998 / 36 (9-10) / 879-896.
(21) Kurosaka, R. et al, Detection of 2-amino-1-methyl-6-(4-hydroxyphenyl)imidazo(4,5-b) pyridine (4'-OH-PhIP) level comparable to PhIP. Jpn. J. Cancer Res. 1992 / 83 (9) / 919-922.
(22) Okogoni, H. et al, Induction of aberrent cryptfoci in C57BL/6N mice by 2-amino-9H-pyrido(2,3-b)indole (AalphaC) and 2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline (MeIQx) Cancer Lett. 1997 / 111 (1-2) / 105-109. , Zhang, X.B. et al, Intestinal mutagenicity of two carcinogenic food mutagens in transgenic mice : 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine and amino(alpha)carboline. Carcinogenesis 1996 / 17 (10) / 2259-2265. , Yoo, M.A. et al, Mutagenic potency of heterocyclic amines in the Drosophila wing spot test and its correlation to carcinogenic potency. Jpn. J. Cancer Res. 1985 / 76 (6) / 468-473.
(23) Beamand, J.A. et al, Effect of some cooked food mutagens on unscheduled DNA synthesis in cultured precision-cut rat, mouse and human liver slices. Food Chem. Toxicol. 1998 / 36 (6) / 455-466. , Yoshida, D. et al, Formation of mutagens by heating foods and model systems. Environ. Health Perspect. 1986 / 67 / 55-58. , Ohgaki, H. et al, Carcinogenicity in mice of mutagenic compounds from glutamic acid and soybean globulin pyrolysates. Carcinogenesis. 1984 / 5 (6) / 815-819.
(24) Pfau, W. et al, Characterization of the major DNA adduct formed by the food mutagen 2-amino-3-methyl-9H-pyrido(2,3-b)indole (MeAalphaC) in primary rat hepatocytes. Carcinogenesis 1996 / 17 (12) / 2727-2732. , Pfau, W. et al, Pancreatic DNA adducts formed in vitro and in vivo by the food mutagens 2-amino-1-methyl-6-phenylimidazo(4,5-b)prydine (PhIP) and 2-amino-3-methyl-9H-pyrido(2,3-b)indole (MeAalphaC). Mutat. Res. 1997 / 378 (1-2) / 13-22.
(25) Skog, K. et al, Analysis of nonpolar heterocyclic amines in cooked foods and meat extracts using gas chromatography-mass spectometry. J. Chromatogr. A. 1998 / 803 (1-2) / 227-233. , Galceran, M.T. et al, Determination of heterocyclic amines by pneumatically assisted electrospray liquid chromatography-mass spectometry. J. Chromatogr. A. 1996 / 730 (1-2) / 185-194. , Yamaguchi, K. et al, Presence of 3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole in broiled beef. Gann. 1980 / 71 (5) / 745-746. , Yamaizumi, Z. et al, Detection of potent mutagens, Trp-P-1 and Trp-P-2 in broiled fish. Cancer Lett. 1980 / 9 (2) / 75-83. , Sugimura, T. et al, Mutagenic factors in cooked foods. Crit. Rev. Toxicol. 1979 / 6 (3) / 189-209.
(26) Ashida, H. et al, Tryptophan pyrolysis products, Trp-P-1 and Trp-P-2 induce apoptosis in primary cultured rat hepatocytes. Biosci. Biotechnol. Biochem. 1998 / 62 (11) / 2283-2287. , Sasaki, Y.F. et al, In vivo genotoxicity of heterocyclic amines detected by a modified alkaline single cell gel electrophoresis assay in a multiple organ study in the mouse. Mutat. Res. 1997 / 395 (1) / 57-73.
(27) Sugimura,T. et al, Mutagens in food. Journal of Agriculture and Food Chemistry 1995 / 43 / 404-414. , Manabe, S. et al, Carcinogenic tryptophan pyrolysis products in the environment. J. Toxicol. Sci. 1991 / 16 (suoppl.1) / 63-72.
(28) Skog, K. et al, Analysis of nonpolar heterocyclic amines in cooked foods and meat extracts using gas chromatography-mass spectometry. J. Chromatogr. A. 1998 / 803 (1-2) / 227-233. , Galceran, M.T. et al, Determination of heterocyclic amines by pneumatically assisted electrospray liquid chromatography-mass spectometry. J. Chromatogr. A. 1996 / 730 (1-2) / 185-194. , Yamaguchi, K. et al, Presence of 3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole in broiled beef. Gann. 1980 / 71 (5) / 745-746. , Yamaizumi, Z. et al, Detection of potent mutagens, Trp-P-1 and Trp-P-2 in broiled fish. Cancer Lett. 1980 / 9 (2) / 75-83. , Sugimura, T. et al, Mutagenic factors in cooked foods. Crit. Rev. Toxicol. 1979 / 6 (3) / 189-209.
(29) Ozawa, Y. et al, Occurence of stereoisomers of 1-(2'-pyrrolidinethione-3'-yl)-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid in fermented radish roots and their different mutagenic properties. Biosci. Biotechnol. Biochem. 1999 / 63 (1) / 216-219. , Lopez-Rodrigeuz, M. et al, Reaction of 6-hydroxy-tetrahydro-beta-carboline-3-carboxylic acids with isocyanates and isothiocyanates. Chem. Pharm. Bull. Tokyo 1994 / 42 (12) / 2108-2112.
(30) Sugimura, T. et al, Mutagenic factors in cooked foods. Crit. Rev. Toxicol. 1979 / 6 (3) / 189-209.
(31) Burkard, W.P. et al, The benzodiazepine antagonist Ro15-1788 reverses the effect of methyl-beta-carboline-3-carboxylate, but not of harmiline on cerebellar cGMP and motorperformance in mice. Eur. J. Pharmacol. 1985 / 109 (2) / 241-247.
(32) Serrano, A. et al, NMDA antagonists block restraint-induced increase in extracellular DOPAC in rat nucleus accumbens. Eur. J. Pharmacol. 1989 / 162 (1) / 157-166. , Claustre, Y. et al, Pharmacological studies on stress-induced increase in frontal cortical dopamine metabolism in the rat. J. Pharmacol. Exp. Ther. 1986 / 238 (2) / 693-700.
(33) Holley, L.A. et al, Dissociation between the attentional effects of infusions of a benzodiazepine receptor agonist and inverse agonist into the basal forebrain. Psychopharmacology (Berl.) 1995 / 120 (1) / 99-108. , Shibata, S. et al, Effects of benzodiazepine and GABA antagonists on anticonflict effects of antianxiety drugs injected into the rat amygdala in a water-lick suppression test. Psychopharmacology 1989 / 98 (1) / 38-44.
(34) Jones, B.J. et al, Microinjections of methyl-beta-carboline-3-carboxylate into the dorsal raphe nucleus : behavioral consequences. Pharmacol. Biochem. Behav. 1986 / 24 (5) / 1487-1489.
(35) Tokuyama, S. et al, Blockade of the development of analgesic tolerance to morphine by psychological stress through benzodiazepine receptor mediated mechanism. Jpn. J. Pharmacol. 1989 / 51 (3) / 425-427. , Kaijima, M. et al, Hypnotic action of ethyl-beta-carboline-3-carboxylate, a benzodiazepine receptor antagonist, in cats. Electroencephalogr. Clin. Neurophysiol. 1984 / 58 (3) / 277-281.
(36) Merlo Pick ,E. et al, A two compartment exploratory model to study anxiolytic / anxiogenic effects of drugs in the rat. Pharmacol. Res. 1989 / 21 (5) / 595-602.
(37) Chermat, R. et al, Interactions of Ginkgo biloba extract (EGb 761), diazepam and ethyl-beta-carboline-3-carboxylate on social behaviour of the rat. Pharmacol. Biochem. Behav. 1997 / 56 (2) / 333-339. , Maestripieri, D. et al, Anxiety in rhesus monkey infants in relation to interactions with their mother and other social companions. Dev. Psychobiol. 1991 / 24 (8) / 571-581. , Hindley, S.W. et al, The effects of methyl-beta-carboline-3-carboxylate on social interaction microinjected into the nucleus raphe dorsalis of the rat. Br. J. Pharmacol. 1985 / 86 (3) / 753-761.
(38) Vellucci, S.V. et al, The effect of midazolam and beta-carboline-3-carboxylate methyl ester on behaviour, steroid hormones and central monoamine metabolites in social groups of talapoin monkeys. Psychopharmacology (Berl.) 86 / 90 (3) / 367-372.
(39) Skolnick, P. et al, A novel chemically induced animal model of human anxiety. Psychopathology 1984 / 17 (suppl.1) / 25-26.
(40) Insel, T.R. et al, Rearing paradigm in a nonhuman primate affects response to beta-CCE challenge. Psychopharmacology (Berl.) 1988 / 96 (1) / 81-86. , Insel, T.R. et al, A benzodiazepine receptor-mediated model of anxiety studies in nonhuman primates and clinical implications. Arch. Gen. Psychiatry 1984 / 41 (8) / 741-750. , Ninan, P.T. et al, Benzodiazepine-mediated experimental ''anxiety'' in primates. Science 1982 / 218 (4579) / 1332-1334.
(41) Murai, T. et al, Opposite effects of midazolam and beta-carboline-3-carboxylic acid-ethyl ester on the release of dopamine from rat nucleus accumbens measured by in vivo microdialysis. Eur. J. Pharmacol. 1994 / 261 (1-2) / 65-71. , Kalin, N.H. et al, Effects of beta-carbolines on fear-related behavioral and neurohormonal responses in infant rhesus monkeys. Biol. Psychiatry. 1992 / 31 (10) / 1008-1019.
(42) Naughton, N. et al, A benzodiazepine antagonist inhibits the cerebral metabolic and respiratory depressant effects of fentanyl. Life Sci. 1985 / 36 (23) / 2239-2245.
(43) Hoffman, W.E. et al, Cerebrovascular and cerebral metabolic effects of flurazepam and a benzodiazepine antagonist, 3-hydroxymethyl-beta-carboline. Eur. J. Pharmacol. 1984 / 106 (3) / 585-591. , Mendelson, W.B. et al, A benzodiazepine receptor antagonist decreases sleep and reverses the hypnotic actions of flurazepam. Science 1983 / 219 (4583) / 414-416.
(44) Ongini, E. et al, Intrinsic and antagonistic effect of beta-carboline FG7142 on behavioral and EEG actions of benzodiazepines and pentobarbital in cats. Eur. J. Pharmacol. 1983 / 95 (1-2) / 125-129.
(45) Adamec, R., Modelling anxiety disorder following chemical exposures. Toxicol. Ind. Health. 1994 / 10 (4-5) / 391-420. , Corda, M.G. et al, Long-lasting proconflict effects induced by chronic administration of the beta-carboline derivate FG7142. Neurosci. Lett. 1985 / 62 (2) / 237-240.
(46) Agmo, A. et al, Benzodiazepine receptor ligands and sexual behavior in the male rat : the role of GABAergic mechanisms. Pharmacol. Biochem. Behav. 1991 / 38 (4) / 781-788.
(47) Fung, S.C. et al, Multiple effects of drugs acting on benzodiazepine receptors. Neurosci. Lett. 1984 / 50 (1-3) / 203-207.
(48) Nakane, H. et al, Stress-induced norepinephrine release in the rat prefrontal cortex measured by microdialysis. Am. J. Physiol. 1994 / 267 (6 Pt 2) / R1559-1566. , Ida, Y. et al, Anxiogenic beta-carboline FG7142 produces activity of neuroadrenergic neurons in specific brain regions of rats. Pharmacol. Biochem. Behav. 1991 / 39 (3) / 791-793.
(49) Karreman, M. et al, Effect of a pharmacological stressor on glutamate efflux in the prefrontal cortex. Brain. Res. 1996 / 716 (1-2) / 180-182.
(50) Donnerer, J. ,Evidence for an excitatory action of the benzodiazepine receptor inverse agonist FG7142 on C-fibre afferents. Naunyn Schmiedebergs Arch. Pharmacol. 1989 / 340 (3) / 352-354.
(51) Webb, J.K. et al, Inhibition of pentgastrin-induced pressor response in conscious rats by the CCK-8 receptor antagonist Cl-988 and chlordiazepoxide. Regul. Pept. 1996 / 61 (1) / 71-76.
(52) Rodgers, R.J. et al, Benzodiazepine ligands, noiception and 'defeat' analgesia in male mice. Psychopharmacology (Berl.) 1987 / 91 (3) / 305-315.
(53) Soltis, R.P. et al, Cardiovascular effects of the beta-carboline FG7142 in borderline hypertensive rats. Physiol. Behav. 1998 / 63 (3) / 407-412. , Horger, B.A. et al, Selective increase in dopamine utilization in the shell subdivision of the nucleus accumbens by the benzodiazepine inverse agonist FG7142. J. Neurochem. 1995 / 65 (2) / 770-774. , Bradberry, C.W. et al, The anxiogenic beta-carboline FG7142 selectively increases dopamine release in rat prefrontal cortex as measured by microdialysis. J. Neurochem. 1991 / 56 (2) / 748-752. , Knorr, A.M. et al, The anxiogenic beta-carboline FG7142 increases in vivo and in vitro tyrosine hydroxylation in the prefrontal cortex. Brain. Res. 1989 / 495 (2) / 355-361. , Stanford, S.C. et al, A single dose of FG7142 causes long-term increase in mouse cortical adrenoceptors. Eur. J. Pharmacol. 1987 / 134 (3) / 313-319. , Ida, Y. et al, The activation of mesoprefrontal dopamine neurons by FG7142 is absent in rats treated chronically with diazepam. Eur. J. Pharmacol. 1987 / 137 (2-3) / 185-190. , Brose, N. et al, Effects of an anxiogenic benzodiazepine receptor ligand on motor activity and dopamine release in nucleus accumbens and stratium in the rat. J. Neurosci. 1987 / 7 (9) / 2917-2926.
(54) Tietz, E.I. et al, Functional GABAA receptor heterogeneity of acutely dissociated hippocampal CA1 pyramidal cells. J. Neurophysiol. 1999 / 81 (4) / 1575-1586. , Vicini, S. et al, Actions of benzodiazepine and beta-carbolin derivates on gamma-amino-butyric acid-activated Cl-channels recorded from membrane patches of neonatal rat cortical neurons in culture. J. Pharmacol. Exp. Ther. 1987 / 243 (3) / 1195-1201. , Jensen, M.S. et al, Electrophysiological studies in cultured mouse CNS neurones of the actions of an agonist and inverse agonist at the benzodiazepine receptor. Br. J. Pharmacol. 1986 / 88 (4) / 717-731.
(55) Chapman, A.G. et al, Effects of two convulsant beta-carboline derivates, DMCM and beta-CCM, on regional neurotransmitter amino acid levels and on in vitro D-(3H)-aspartate release in rodents. J. Neurochem. 1985 / 45 (2) / 370-381.
(56) De Boer, S.F. et al, Effects of chlordiazepoxide, flumazenil and DMCM on plasma catecholamine and corticosterone concentrations in rats. Pharmacol. Biochem. Behav. 1991 / 38 (1) / 13-19.
(57) Lista, A. et al, The benzodiazepine inverse agonist DMCM decreases serotonergic transmission in rat hippocampus : an in vivo electrophysiological study. Synapse 1990 / 6 (2) / 175-180. , Lista, A. et al, Modulation of the electrically evoked release of 5-(3H)hydroxytryptamine from rat cerebral cortex : effects of alpidem, CL218,872, and diazepam. J. Neurochem. 1988 / 51 (5) / 1414-1421.
(58) Yang, X.M. et al, Behavioral evidence for the role of noradrenaline in the putative anxiogenic actions of the inverse benzodiazepine receptor agonist methyl-4-6,7-dimethoxy-beta-carboline-carboxylate. J. Pharmacol. Exp. Ther. 1989 / 250 (1) / 358-363.
(59) Ushijiama, I. et al, Cocaine : evidence for NMDA, beta-carboline- and dopaminergic-mediated seizures in mice. Brain. Res. 1998 / 797 (2) / 347-350.
(60) Maier, S.F. et al, The dorsal raphe nucleus is a site of action mediating the behavioral effects of the benzodiazepine receptor inverse agonist DMCM. Behav. Neurosci. 1995 / 109 (4) / 759-766. , Fanselow, M.S. et al, The benzodiazepine inverse agonist DMCM as an unconditional stimulus for fear-induced analgesia : implications for the role of GABAA receptors in fear-related behaviour. Behav. Neurosci. 1992 / 106 (2) / 336-344. , Cutler, M.G. et al, Effects of the benzodiazepine receptor inverse agonist, DMCM, on the behaviour of mice : an ethopharmacological study. Neuropharmacology 1991 / 30 (12A) / 1255-1261.
(61) Arora, P.K. et al, Suppression of cytotoxic T lymphocyte (CTL) activity by FG7142, a benzodiazepine receptor 'inverse agonist'. Immunopharmacology 1991 / 21 (2) / 91-97. , Petitto, J.M. et al, Suppression of natural killer cell activity by FG7142, a benzodiazepine receptor inverse agonist. Brain. Behav. Immun. 1989 / 3 (1) / 39-46. , Arora, P.K. et al, Suppression of the immune response by benzodiazepine receptor inverse agonists. J. Neuroimmunol. 1987 / 15 (1) / 1-9.
(62) Marescaux, C. et al, Bidirectional effects of the beta-carbolines in rats with spontaneous petit mal-like seizures. Brain. Res. Bull. 1987 / 19 (3) / 327-335.
(63) Jensen, L.H. et al, Bidirectional effects of beta-carbolines and benzodiazepines on cognitive processes. Brain. Res. Bull. 1987 / 19 (3) 359-364.
(64) Garginlo, P.A. et al, Is inhibition by diazepam and beta-carbolines of estrogen-induced luteinizing hormone secretion related to sedative effects ? Pharmacol. Biochem. Behav. 1991 / 40 (2) / 335-338.
(65) Kreeger, T.J. et al, Diazepam-induced feeding in ceptive grey wolves (Canis Lupus). Pharmacol. Biochem. Behav. 1991 / 39 (3) / 559-561. , Cooper, S.J. ,Hyperphagic and anorectic effects of beta-carbolines in a palatable food consumption test : comparisons with triazolam and quazepam. Eur. J. Pharmacol. 1986 / 120 (3) / 257-265.(158) Cooper, S.J. et al, Benzodiazepine receptor ligands and the consumption of highly palatable diet in non-deprived male rats. Psychopharmacology (Berl.) 1985 / 86 (3) / 348-355.
(66) Duka, T. et al, Human studies on the benzodiazepine receptor antagonist beta-carboline ZK93426 : antagonism of lormetazepam's psychotropic effects. Psychopharmacology (Berl.) 1988 / 95 (4) / 463-471. , Dorow, R. et al, Clinical perspectives of beta-carbolines from first studies in humans. Brain. Res. Bull. 1987 / 19 (3) / 319-326.
(67) Duka, T. et al, Effects of ZK93,426, a beta-carboline benzodiazepine receptor antagonist on night sleep pattern in healthy male volunteers. Psychopharmacology (Berl.) 1995 / 117 (2) / 178-185.
(68) File, S.E. et al, Actions of the beta-carboline ZK93426 in an animal test of anxiety and the holeboard : interactions with Ro15-1788. J. Neural. Transm. 1986 / 65 (2) / 103-114.
(69) Papavergou, E. et al, The evaluation in the ames test of the mutagenicity of tetrahydro-beta-carboline-3-carboxylic acids from smoked foods. Food. Addit. Contam. 1992 / 9 (2) / 183-187.
(70) Huttunen, P. et al, Anatomical localization in hippocampus of tetrahydro-beta-carboline-induced alcohol drinking in rat. Alcohol 1987 / 4 (3) / 181-187.
(71) Wible, J.H. et al, Cardiovascular effects of beta-carbolines in conscious rats. Hypertens. Res. 1996 / 19 (3) / 161-170.
(72) Rovescalli, A.C. et al, Endocrine effects of 5-methoxytryptoline, 5-hydrotryptoline and tryptoline, putative modulators of rat serotonergic system. J. Endocrinol. Invest. 1987 / 10 (1) / 65-72.
(73) De Deyn, P.P. et al, Epilepsy and the GABA-hypothesis ,a brief revieuw and some examples. Acta. Neurol. Belg. 1990 / 90 (2) / 65-81. , Smythe, G.A. et al, Effects of 6-methoxy-1,2,3,4-tetrahydro-beta-carboline and yohimbine on hypothalamic monoamine status and pituitary hormone release in rats. Aust. J. Biol. Sci. 83 / 36 (4) / 379-386.
(74) Wettstein, J.G. et al, Distinctive behavioral effects of the pyrazoloquinoline CGS8216 in squirrel monkeys. Pharmacol. Biochem. Behav. 1988 / 29 (4) / 741-745.
(75) Pellow, S. et al, The effects of putative anxiogenic compounds (FG7142, CGS8216 and Ro15-1788) on the rat corticosterone response. Physiol. Behav. 1985 / 35 (4) / 587-590.
(76) Deckert, J. et al, CGS8216 treatment decreases central-type benzodiazepine receptors in rat brain. Eur. J. Pharmacol. 1987 / 142 (3) / 457-460.
(77) Turteltaub ,K.W. et al, MeIQx-DNA adduct formation in rodent and human tissues at low doses. Mutat. Res. 1997 / 376 (1-2) / 243-252.
(78) Hatch, F.T. et al, Quantitative structure-activity (QSAR) relationships of mutagenic aromatic and heterocyclic amines. Mutat. Res. 1997 / 376 (1-2) / 87-96. , Blowers, L. et al, Dietary and other lifestyle factors of women with brain gliomas in Los Angeles County. Cancer Causes Control 1997 / 8 (1) / 5-12. , Barrett, J.H. et al, Nitrate in drinking water and the incidence of gastric, esophageal, and brain cancer in Yorkshire, England. Cancer Causes Control 1998 / 9 (2) / 153-159.
(79) Wang, C.J. et al, Promotional effect of N-nitroso-N-(3keto-1,2-butanediol)-3'-nitrotyramine (a nitrosated Maillard reaction product) in mouse fibroblast cells. Fd. Chem. Toxicol. 1998 / 36 (8) / 631-636. , Tseng, T.H. et al, Tumor promoting effect of N-nitroso-N-(2-hexanonyl)-3'-nitrotyramine (a nitrosated Maillard reaction product) in benzo(a)pyrene-initiated mouse skin carcinogenesis. Chem. Biol. Interact. 1998 / 115 (1) / 23-38. , De Stefani, E. et al, Dietary nitrosamines ,heterocyclic amines ,and risk of gastric cancer a case-controle study in Uruguay. Nutr. Cancer 1998 / 30 (2) / 158-162. , Pfau, W. et al, Identification of the major hepatic DNA adduct formed by the food mutagen 2-amino-9H-pyrido(2,3-b)indole (AalphaC). Chem. Res. Toxicol. 1997 / 10 (10) / 1192-1197. , Herneaz, J. et al, Effects of tea and chlorophyllin on the mutagenicity of N-hydroxy-IQ : studies of enzyme inhibition, molecular complex formation ,and degredation / scavenging of the active metabolites. Environ. Mol. Mutagen. 1997 / 30 (4) / 468-474. , Kemmerling, W., Toxicity of Palicourea marcgravii : combined effects of fluoracetate, N-methyltyramine and 2-methyl-tetrahydro-beta-carboline. Z. Naturforsch. (C) 1996 / 51 (1-2) / 59-64. , Hiramoto, K. et al, Induction of DNA recombination by activated 3-amino-1-methyl-5H-pyrido(4,3-b)indole. Jpn. J. Cancer Res. 1995 / 86 (2) / 155-159.
(80) Sugimura, T. et al, Carcinogenic, Mutagenic, and Comutagenic Aromatic Amines in Human Foods. Natl. Cancer Inst. Monogr. 1981 / 58 / 27-33.
(81) Raza, H. et al, Metabolism of 2-amino-alpha-carboline. A food borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2. Drug. Metab. Dispos. 1996 / 24 (4) / 395-400. , Yoo, M.A. et al, Mutagenic potency of heterocyclic amines in the Drosophila wing spot test and its correlation to carcinogenic potency. Jpn. J. Cancer Res. 1985 / 76 (6) / 468-473.
(82) Pfau, W. et al, Characterization of the major DNA adduct formed by the food mutagen 2-amino-3-methyl-9H-pyrido(2,3-b)indole (MeAalphaC) in primary rat hepatocytes. Carcinogenesis 1996 / 17 (12) / 2727-2732. , Pfau, W. et al, Pancreatic DNA adducts formed in vitro and in vivo by the food mutagens 2-amino-1-methyl-6-phenylimidazo(4,5-b)prydine (PhIP) and 2-amino-3-methyl-9H-pyrido(2,3-b)indole (MeAalphaC). Mutat. Res. 1997 / 378 (1-2) / 13-22.
(83) Ashida, H. et al, Tryptophan pyrolysis products, Trp-P-1 and Trp-P-2 induce apoptosis in primary cultured rat hepatocytes. Biosci. Biotechnol. Biochem. 1998 / 62 (11) / 2283-2287.
(84) Sasaki, Y.F. et al, In vivo genotoxicity of heterocyclic amines detected by a modified alkaline single cell gel electrophoresis assay in a multiple organ study in the mouse. Mutat. Res. 1997 / 395 (1) / 57-73. , Sugimura,T. et al, Mutagens in food. Journal of Agriculture and Food Chemistry 1995 / 43 / 404-414. , Manabe, S. et al, Carcinogenic tryptophan pyrolysis products in the environment. J. Toxicol. Sci. 1991 / 16 (suoppl.1) / 63-72.
(85) Higashimoto, M. ,Inhibitory effects of citrus fruits on the mutagenicity of 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid treated with nitrite in the presence of ethanol. Mutat. Res. 1998 / 415 (3) / 219-226. , Papavergou, E. et al, The evaluation in the Ames test of the mutagenicity of tetrahydro-beta-carboline-3-carboxylic acids from smoked foods. Food. Addit. Contam. 1992 / 9 (2) / 183-187. , Wakabayashi, K. et al, Presence of 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acids and tyramine as precursers of mutagens in soyasauce after nitrite treatment. IARC Sci. Publ. 1984 / 57 / 17-24.
(86) Hammons, G.J. et al, Effects of chemoprotective agents on the metabolic activation of the carcinogenic arylamines PhIP and 4-aminobiphenyl in human and rat liver microsomes. Nutr. Cancer 199 / 33 (1) / 46-52.
(87) Sabbioni, G. et al, Hemoglobin binding of bicyclic aromatic amines. Chem. Res. Toxicol. 1998 / 11 (5) / 471-483.
(88) Williams, G.M. et al, Inhibition by acetaminophen of intestinal cancer in rats induced by an aromatic amine similar to food mutagens. Eur. J. Cancer Prev. 1997 / 6 (4) / 357-362.
(89) Pence, B.C. et al, Feeding of a well-cooked beef diet containing a high heterocyclic amine content enhances colon and stomach carcinogenesis in 1,2-dimethylhydrazine-treated rats. Nutr. Cancer 1998 / 30 (3) / 220-226.
(90) Hiramoto, K. et al, Induction of DNA recombination by activated 3-amino-1-methyl-5H-pyrido(4,3-b)indole. Jpn. J. Cancer Res. 1995 / 86 (2) / 155-159.
(91) Ojala, W.H. et al, Heterocyclic N-acetoxyarylamines, models for the putative ultimate carcinogens of aromatic amines : 2-acetoxyamino-5-phenylpyridine and 2-acetoxyaminopyridine. Acta. Cristallogr. C. 1997 / 53 (pt 5) / 634-637.
(92) Koch, W.H. et al, Specificity of base substitution mutations induced by the dietary carcinogens 2-amino-1methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) and 2-amino-3-methylimidazo(4,5-f)quinoline (IQ) in Salmonella. Environ. Mol. Mutagen 1998 / 31 (4) / 327-332. , Nagao, M. et al, Genetic changes induced by heterocyclic amines. Mutat. Res. 1997 / 376 (1-2) / 161-167. , Thompson, L.H. et al, Comparative genotoxic effects of the cooked-food-related mutagens Trp-P-2 and IQ in bacteric and cultured mammalian cells. Mutat. Res. 1983 / 117 (3-4) / 243-257.
(93) Broschard, T.H. et al, Mutagenic specificity of the food mutagen 2-amino-3-methylimidazo(4,5-f)quinoline in Escheria coli using the yeast URA3 gene as a target. Carcinogenesis 1998 / 19 (2) / 305-310.
(94) Waldren, C.A. et al, Mutant yields and mutational spectra of the heterocyclic amines MeIQ and PhIP at the si locus of human-hamster AL cells with activation by chick embryo liver (CELC) co-cultures. Mutat. Res. 1999 / 425 (1) / 29-46. , Okonogi, H. et al, Agreement of mutational characteristics of heterocyclic amines in lacl of the Big Blue mouse with those in tumor related genes in rodents. Carcinogenesis 1997 / 18 (4) / 745-748.
(95) Sasaki, Y.F. et al, Colon specific genotoxicity of heterocyclic amines detected by themodified alkaline single cell gel electrophoresis assay of multiple mouse organs. Mutat. Res. 1998 / 414 (1-3) / 9-14. , Grivas, S., Synthetic roots to the food carcinogen 2-amino-3,8-dimethylimidazo(4,5-f)quinozaline (8-MeIQx) and related compounds. Princess Takamatsu Symp. 1995 / 23 / 1-8.
(96) Schut, H.A. et al, DNA adducts of heterocyclic amine food mutagens : implications for mutagenesis and carcinogenesis. Carcinogenesis 1999 / 20 (3) / 353-368.
(97) Frandsen, H. ,Excretion of DNA adducts of 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine and and 2-amino-3,4,8-trimethylimidazo(4,5-f)quinoxaline, PhIP-dg, PhIP-DNA and DiMeIQx-DNA from rat. Carcinogenesis 1997 / 18 (8) / 1555-1560. , Knize, M.G. et al, Identification of the mutagenic quinoxaline isomers from fried ground beef. Mutat. Res. 1987 / 178 (1) / 25-32.
(98) Solyakov, A. et al, Heterocyclic amines in process flavours, process flavour ingredients, bouillon concentrates and a pan residue. Food Chem. Toxicol. 1999 / 37 (1) / 1-11. , Skog, K. et al, Analysis of nonpolar heterocyclic amines in cooked foods and meat extracts using gas chromatography-mass spectometry. J. Chromatogr. A. 1998 / 803 (1-2) / 227-233. , Stavric, B. et al, Mutagenic heterocyclic aromatic amines (HAA's) in 'processed food flavour' samples. Food Chem. Toxicol. 1997 / 35 (2) / 185-197. , Wakabayashi, K. et al, Human exposure to mutagenic / carcinogenic heterocyclic amines and comutagenic beta-carbolines. Mutat. Res. 1997 / 376 (1-2) / 253-259. , Galceran, M.T. et al, Determination of heterocyclic amines by pneumatically assisted electrospray liquid chromatography-mass spectometry. J. Chromatogr. A. 1996 / 730 (1-2) / 185-194. , Gross, G.A. et al, Heterocyclic aromatic amine formation in grilled bacon, beef and fish and in grilled scrapings. Carcinogenesis 1993 / 14 (11) / 2313-2318. , Sugimura, T. et al, Mutagenic factors in cooked foods. Crit. Rev. Toxicol. 1979 / 6 (3) / 189-209.
(99) Becher, G. et al, Isolation and identification of mutagens from a fried Norwegian meat product. Carcinogenesis 1988 / 9 (2) / 247-253.
(100) Overvik, E. et al, Influence of creatine, amino acids and water on the formation of the mutagenic heterocyclic amines found in cooked meat. Carcinogenesis 1989 / 10 (12) / 1293-1301.
(101) Wakabayashi, K. et al, Identification of new mutagenic heterocyclic amines and quantification heterocyclic amines. Princess Takamatsu Symp. 1995 / 23 / 39-49.
(102) Vikse, R. et al, Heterocyclic amines in cooked meat (in Norwegian). Tidsskr. Nor. Laegeforen 1999 / 119 (1) / 45-49.
(103) Takahashi, T. et al, Uptake of neurotoxic candidate, (R)-1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline into human dopaminergic neuroblastoma 3H-SY5Y cells by dopamine transportsystem. J. Neural. Transm. Gen. Sect. 1994 / 98 (2) / 107-118.
(104) Mandir, A.S. et al, Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 1999 / 96 (10) / 5774-5779. , Harik, S.I. et al, On the mechanisms underlying 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity : the effect of perinigral infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, its metabolite and their analogues in the rat. J. Pharmacol. Exp. ther. 1987 / 241 (2) / 669-676. , Frei, B. et al, N-methyl-4-phenylpyridinium (MPP+) together with 6-hydroxydopamine or dopamine stimulates Ca2+ release from mitochondria. FEBS Lett. 1986 / 198 (1) / 99-102. , Heikkila, R.E. et al, Prevention of MPTP-induced neurotoxicity by AGN-1133 and AGN-1135, selective inhibitors of monoamine oxidase-B. Eur. J. Pharmacol. 1985 / 116 (3) / 313-317. , Heikkila, R.E. et al, Dopaminergic neurotoxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats : implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci. Lett. 1985 / 62 (3) / 389-394. , Mytilineou, C. et al, 1-methyl-4phenylpyridine (MPP+) is toxic to mesencephalic dopamine neurons in culture. Neurosci. Lett. 1985 / 57 (1) / 19-24.
(105) Matsubara, K. et al, Endogenously occurring beta-carboline induces parkinsonism in non primate animals : a possible causative protoxin in idiopathic Parkinson's Disease. J. Neurochem. 1998 / 70 (2) / 727-735.
(106) Fonne-Pfister, R. et al, MPTP, the neurotoxin inducing Parkinson's disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450buf1, P450db1) catalyzing debrisoquine 4-hydroxylation. Biochem. Biophys. Res. Commun. 1987 / 148 (3) / 1144-1150. , Naoi, M. et al, Metabolism of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in a rat pheochromocytoma cell line, PC12h. Life Sci. 1987 / 41 (24) / 2655-2661. , Heikkila, R.E. et al, Studies on the oxidation of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase B. J. Neurochem. 1985 / 45 (4) / 1049-1054. , Fuller, R.W. et al, Mechanisms of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity to striatal dopamine neurons in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 1985 / 9 (5-6) / 687-690. , Heikkila, R.E. et al, Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by MAO inhibitors. Nature 1984 / 311 (5985) / 467-469.
(107) Pai, K.S. et al, Protection and potentiation of MPTP-induced toxicity by cytochrome P450 inhibitors and inducer : in vitro studies with brain slices. Brain. Res. 1991 / 555 (2) / 239-244. , Shahi, G.S. et al, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity : partial protection against striato-nigral dopamine sepletion in C57BL/6J mice by cigarette smoke exposure and by beta-naphthoflavone-pretreatment. Neurosci. Lett. 1991 / 127 (2) / 247-250.
(108) Melamed, E. et al, Dopamine, but not norepinephrine or serotonine uptake inhibitors protect mice against neurotoxicity of MPTP. Eur. J. Pharmacol. 1985 / 116 (1-2) / 179-181.
(109) Heikkila, R.E. et al, Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse : relationships between monoamine oxidase, MPTP metabolism and neurotoxicity. Life Sci. 1985 / 36 (3) / 231-236. , Melamed, E. et al, Mesolimbic dopaminergic neurons are not spared by MPTP neurotoxicity in mice. Eur. J. Pharmacol. 1985 / 114 (1) / 97-100.
(110) Wilson, J.A. et al, MPTP causes a non-reversible depression of synaptic transmission in mouse neostriatal brain slice. Brain Res. 1986 / 368 (2) / 357-360.
(111) Wu, W.R. et al, Involvement of monoamine oxidase inhibition in neuroprotective and neurorestorative effects of Ginkgo biloba extract against MPTP-induced nigrostriatal dopaminergic toxicity in C57 mice. Life Sci. 1999 / 65 (2) / 157-164. , Pileblad, E. et al, Catecholamine-uptake inhibitors prevents the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in mouse brain. Neuropharmacology 1985 / 24 (7) / 689-692. , Gerhardt, G. et al, Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse : an in vivo electrochemical study. J. Pharmacol. Exp. Ther. 1985 / 235 (1) / 259-265.
(112) Lee, E.H. et al, Comparitive studies of the neurotoxicity of MPTP in rats. Chin. J. Physiol. 1992 / 35 (4) / 317-336. , Hara, K. et al, Reversible serotinergic neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mouse striatum studied byneurochemical and immunohistochemical approaches. Brain Res. 1987 / 410 (2) / 371-374.
(113) Malgrange, B. et al, beta-Carbolines induce apoptotic death of cerebellar granule neurones in culture. Neuroreport 1996 / 7 (18) / 3041-3045.
(114) Perry, T.L. et al, 4-Phenylpyridine and three other analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine lack dopaminergic nigrostriatal neurotoxicity in mice and marmosets. Neurosci. Lett. 1987 / 75 (1) / 65-70.
(115) Harris, C.A. et al, Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid. Br. J. Pharmacol. 1998 / 124 (2) / 391-399. , Levivier, M. et al, Quinolinic acid-induced lesions of the rat striatum : quantitative autoradiographic binding assessment. Neurol. Res. 1998 / 20 (1) / 46-56.
(116) Pai, K.S. et al, Quisqualic-acid-induced neurotoxicity is protected by NMDA and non-NMDA antagonists. Neurosci. Lett. 1992 / 143 (1-2) / 177-180. , Zinkand, W.C. et al, Quisqualate neurotoxicity in rat cortical cultures : pharmacology and mechanisms. Eur. J. Pharmacol. 1992 / 648 / 355-357.
(117) Nagatsu, Isoquinoline neurotoxics in the brain and Parkinson's disease. Neurosci. Res. 1997 / 29 (2) / 99-111.
(118) Naoi, M. et al, Dopamine-derived endogenous 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat : biochemical ,pathological and behavioral studies. Brain. Res. 1996 / 709 (2) / 285-295. , Naoi, M. et al, Enzymatic oxidation of the dopaminergic neurotoxin 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, into 1,2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion. Life Sci. 1995 / 57 (11) / 1061-1066. , Maruyama, W. et al, N-methyl(R)salsolinol produces hydroxyl radicals : involvement to neurotoxicity. Free Radic. Biol. Med. 1995 / 19 (1) / 67-75.
(119) McNaught, K.S. et al, Inhibition of complex 1 by isoquinoline derivates structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem. Pharmacol. 1995 / 50 (11) / 1903-1911.
(120) Skaper, S.D. et al, Characterization of 2,3,4-trihydroxyphenylalanine neurotoxicity in vitro and protective effects of ganglioside GM1 : implications for Parkinson's disease. J. Pharmacol. Exp. ther. 1992 / 263 (3) / 1440-1446.
(121) Dodel, R.C. et al, Caspase-3-like proteases and 6-hydroxydopamine-induced neuronal cell death. Brain. Res. Mol. Brain. Res. 1999 / 64 (1) / 141-148. , Double, K.L. et al, In vitro studies of ferritin iron release and neurotoxicity. J. Neurochem. 1998 / 70 (6) / 2492-2499.
(122) Javitch, J.A. et al, Parkinsononism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-pyridine : characterization and localization of receptor binding in sites in rat and human brain. Proc. Natl. Acad. Sci. U.S.A. 1984 / 81 (14) / 4591-4595. , Hallman, H. et al, Neurotoxicity of the meperidine analogue N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons in the mouse. Eur. J. Pharmacol. 1984 / 97 (1-2) / 133-136.
(123) Irwin, I. et al, Selective accumulation of MPP+ in the substantia nigra : a key to neurotoxicity ? Life Sci. 1985 / 36 (3) / 207-212. , Cohen, G. et al, Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys. Eur. J. Pharmacol. 1984 / 106 (1) / 209-210. , Markey, S.P. et al, Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 1984 / 311 (5985) / 464-467. , Burns, R.S. et al, The neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the monkey and man. Can. J. Neurol. Sci. 1984 / 11 (1 suppl.) / 166-168.
(124) Heikkila, R.E. et al, Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by MAO inhibitors. Nature 1984 / 311 (5985) / 467-469.
(125) Ramsay, R.R. et al, Inhibition of NADH oxidation by pyridine derivates. Biochem. Biophys. Res. Commun. 1987 / 146 (1) / 53-60. , Ansher, S.S. et al, Role of N-methyltransferases in the neurotoxicity associated with the metabolites of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and other 4-substituted pyridines present in the environment. Biochem. Pharmacol. 1986 / 35 (19) / 3359-3363.
(126) Deutch, A.Y. et al, 3-Acetylpyridine-induced degeneration of the nigrostriatal dopamine system : an animal model of olivopontocerebellar atrophy-associated parkinsonism. Exp. Neurol. 1989 / 105 (1) / 1-9.
(127) Trevor, A.J. et al, Bioactivity of MPTP : reactive metabolites and possible biochemical sequelae. Life Sci. 1987 / 40 (8) / 713-719.
(128) Youngster, S.K. et al, 1-Methyl-4-cyclohexyl-1,2,3,6-tetrahydropyridine (MCTP) : an alicyclic MPTP-like neurotoxin. Neurosci. Lett. 1987 / 79 (1-2) / 151-156.
(129) Kindt, Role for monoamine oxidase-A (MAO-A) in the bioactivation and nigrostriatal dopaminergic neurotoxicity of the MPTP analog, 2'-Me-MPTP. Eur. J. Pharmacol. 1988 / 146 (2-3) / 313-318. , Sonsalla, P.K. et al, Characteristics of 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine-induced neurotoxicity in the mouse. J. Pharmacol. Exp. Ther. 1987 / 242 (3) / 850-857.
(130) Heikkila, R.E. et al, Importance of monoamine oxidase in the bioactivation of neurotoxic analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. U.S.A. 1988 / 85 (16) / 6172-6176.
(131) Youngster, S.K. et al, Evaluation of the biological activity of several analogs of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Neurochem. 1987 / 48 (3) / 929-934.
(132) Finnegan, K.T. et al, 1,2,3,6-tetrahydro-1-methyl-4-(methylpyrrol-2-yl)pyridine : studies on the mechanism of action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Pharmacol. Exp. Ther. 1987 / 242 (3) / 1144-1151.
(133) Chiueh, C.C. et al, Enhanced hydroxyl radical generation by 2'-methyl analog of MPTP : suppression by clorgyline and deprenyl. Synapse 1992 / 11 (4) / 346-348.
(134) Desole, M.S. et al, Correlation between 1-methyl-4-phenylpyridinium (MPP+) levels, ascorbic acid oxidation and glutathione levels in the striatal synaptosomes of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rats. Neurosci. Lett. 1993 / 161 (2) / 121-123.
(135) Mihatsch, W. et al, Treatment with antioxidants does not prevent loss of dopamine in the striatum of MPTP-treated common marmosets : preliminary observations. J. Neural. Transm. Park. Dis. Dement. Sect. 1991 / 3 (1) / 73-78. , Sutphin, M.S. et al, Effects of low selenium diets on antioxidant status and MPTP toxicity in mice. Neurochem. Res. 1991 / 16 (12) / 1257-1263. , Gong, L. et al, Vitamine E supplements fail to protect mice from acute MPTP neurotoxicity. Neuroreport. 1991 / 2 (9) / 544-546. , Sanchez-Ramos, J.R. et al, Selective destruction of cultured dopaminergic neurons from fetal rat mesencephalon by 1-methyl-4-phenyl-pyridinium : cytochemical and morphological evidence. J. Neurochem. 1988 / 50 (6) / 1934-1944.

+2

2

Andry, шикарно! Моя тема!  :cool: стащу-ка я на свой форум, можно?

0

3

Shanti
Покажи нам свой форум :jumping: заинтриговала прямо...

0

4

Kosmonavt написал(а):

Покажи нам свой форум :jumping: заинтриговала прямо...

Там еще мало инфы, можно сказать сырой... как-нибудь потом )

0

5

белки с углеводами вообще не рекомендуют есть вместе, даже в сыром виде, поскольку для них нужен разный желудочный сок. так что любимый многими бутерброд с колбасой-зло)

0

6

Shanti написал(а):

Andry, шикарно! Моя тема!  :cool: стащу-ка я на свой форум, можно?

На здоровье.
Вам не хватает 1-го форума, в смысле лично для себя  :flirt:

0

7

Nemesis_Deathmaster написал(а):

белки с углеводами вообще не рекомендуют есть вместе, даже в сыром виде, поскольку для них нужен разный желудочный сок. так что любимый многими бутерброд с колбасой-зло)

А вот кстати есть книга Минвалеева целая глава есть о разоблачении раздельного питания: "О раздельном питании, или Надо ли разделять неразделимое".

Andry написал(а):

Вам не хватает 1-го форума, в смысле лично для себя  :flirt:

Вобще-то тот форум не связан с сыроедением и в принципе почти не пересекается...очень узконаправленный...
Лично для себя я бы вообще форумы не создавала бы...

0

8

Еда и болезни. В книге много исследований.
Толстая книга в 742 страницы написанная для врачей и людей принимающих решение в отношении питания на английском.
Язык профессиональный-понятный врачам-пациентам способный уладить споры в отношении заболеваний и питания между ними. Пользуемся поиском по книге и словариком.
http://www.sendspace.com/file/pgzamw
Food and Nutrients in Disease Management.pdf
Пароль: FoodAndDisease

+1

9

Shanti написал(а):

А вот кстати есть книга Минвалеева целая глава есть о разоблачении раздельного питания: "О раздельном питании, или Надо ли разделять неразделимое".

Shanti

Почему у меня скачивается "абра-кадабра"(всякие кубики, ромбики и т.д), может я делаю что не правильно?

0

10

Merkuriy написал(а):

Почему у меня скачивается "абра-кадабра"(всякие кубики, ромбики и т.д), может я делаю что не правильно?

Странно, там ведь прямая ссылка ) Кстати,  в книге есть глава и о голодании - как о мифе о великом очистителе )

0


Вы здесь » СЫРОЕДЕНИЕ » Cыроедение Палеолита/СЫРОМЯСОЕДЕНИЕ » Список опасных веществ в приготовленных продуктах